Extensions 1→N→G→Q→1 with N=C32 and Q=C22xDic3

Direct product G=NxQ with N=C32 and Q=C22xDic3
dρLabelID
Dic3xC62144Dic3xC6^2432,708

Semidirect products G=N:Q with N=C32 and Q=C22xDic3
extensionφ:Q→Aut NdρLabelID
C32:(C22xDic3) = C2xC6.S32φ: C22xDic3/C22D6 ⊆ Aut C3272C3^2:(C2^2xDic3)432,317
C32:2(C22xDic3) = C22xC32:C12φ: C22xDic3/C23S3 ⊆ Aut C32144C3^2:2(C2^2xDic3)432,376
C32:3(C22xDic3) = C22xHe3:3C4φ: C22xDic3/C23S3 ⊆ Aut C32144C3^2:3(C2^2xDic3)432,398
C32:4(C22xDic3) = S32xDic3φ: C22xDic3/Dic3C22 ⊆ Aut C32488-C3^2:4(C2^2xDic3)432,594
C32:5(C22xDic3) = C22xC33:C4φ: C22xDic3/C2xC6C4 ⊆ Aut C3248C3^2:5(C2^2xDic3)432,766
C32:6(C22xDic3) = C2xS3xC3:Dic3φ: C22xDic3/C2xC6C22 ⊆ Aut C32144C3^2:6(C2^2xDic3)432,674
C32:7(C22xDic3) = C2xC33:9(C2xC4)φ: C22xDic3/C2xC6C22 ⊆ Aut C3248C3^2:7(C2^2xDic3)432,692
C32:8(C22xDic3) = S3xC6xDic3φ: C22xDic3/C2xDic3C2 ⊆ Aut C3248C3^2:8(C2^2xDic3)432,651
C32:9(C22xDic3) = C2xDic3xC3:S3φ: C22xDic3/C2xDic3C2 ⊆ Aut C32144C3^2:9(C2^2xDic3)432,677
C32:10(C22xDic3) = C2xC6xC3:Dic3φ: C22xDic3/C22xC6C2 ⊆ Aut C32144C3^2:10(C2^2xDic3)432,718
C32:11(C22xDic3) = C22xC33:5C4φ: C22xDic3/C22xC6C2 ⊆ Aut C32432C3^2:11(C2^2xDic3)432,728

Non-split extensions G=N.Q with N=C32 and Q=C22xDic3
extensionφ:Q→Aut NdρLabelID
C32.(C22xDic3) = C22xC9:C12φ: C22xDic3/C23S3 ⊆ Aut C32144C3^2.(C2^2xDic3)432,378
C32.2(C22xDic3) = C2xS3xDic9φ: C22xDic3/C2xC6C22 ⊆ Aut C32144C3^2.2(C2^2xDic3)432,308
C32.3(C22xDic3) = C2xC6xDic9φ: C22xDic3/C22xC6C2 ⊆ Aut C32144C3^2.3(C2^2xDic3)432,372
C32.4(C22xDic3) = C22xC9:Dic3φ: C22xDic3/C22xC6C2 ⊆ Aut C32432C3^2.4(C2^2xDic3)432,396

׿
x
:
Z
F
o
wr
Q
<